操人视频99青青av|亚洲a极淫交3P毛片电影|精品蜜桃人妻天天久|国产精品色婷婷免费|正规av网站在线免费观看|国产精品高清在线观看|免费成人网站在线|97干色五月天最黄三级无码片|在线免费观看黄色毛片A片|日韩无码视频一二三四区

等差數(shù)列教案

時間:2024-10-24 08:11:43 其它教案 我要投稿

等差數(shù)列教案

  作為一名默默奉獻的教育工作者,常常需要準備教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調(diào)動學生學習的積極性。寫教案需要注意哪些格式呢?下面是小編為大家整理的等差數(shù)列教案,僅供參考,希望能夠幫助到大家。

等差數(shù)列教案

  等差數(shù)列教案1

  教學目標

  1.明確等差數(shù)列的定義.

  2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

  3.培養(yǎng)學生觀察、歸納能力.

  教學重點

  1. 等差數(shù)列的概念;

  2. 等差數(shù)列的通項公式

  教學難點

  等差數(shù)列“等差”特點的理解、把握和應用

  教學方法

  啟發(fā)式數(shù)學

  教具準備

  投影片1張(內(nèi)容見下面)

  教學過程

  復習回顧

  師:上兩節(jié)課我們共同學習了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式。這兩個公式從不同的.角度反映數(shù)列的特點,下面看一些例子。(放投影片)

  共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

  師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

  一、定義:

  等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

  二、等差數(shù)列的通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得:

  若將這n-1個等式相加,則可得:

  即:

  即:

  即:

  由此可得:

  師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項 和公差d,便可求得其通項 。

  如數(shù)列① (1≤n≤6)

  數(shù)列②: (n≥1)

  數(shù)列③:

 。╪≥1)

  由上述關系還可得:

  即:

  則: =

  如:

  三、例題講解

  例1:(1)求等差數(shù)列8,5,2…的第20項

  (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  解:(1)由

  n=20,得

 。2)由

  得數(shù)列通項公式為:

  由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

  (Ⅲ)課堂練習

  生:(口答)課本P118練習3

 。〞婢毩暎┱n本P117練習1

  師:組織學生自評練習(同桌討論)

 。á簦┱n時小結

  師:本節(jié)主要內(nèi)容為:

       ①等差數(shù)列定義。

  即 (n≥2)

 、诘炔顢(shù)列通項公式 (n≥1)

  推導出公式:

  (V)課后作業(yè)

  一、課本P118習題3.2 1,2

  二、1.預習內(nèi)容:課本P116例2—P117例4

  2.預習提綱:①如何應用等差數(shù)列的定義及通項公式解決一些相關問題?

 、诘炔顢(shù)列有哪些性質(zhì)?

  板書設計

  課題

  一、定義

  1.(n≥2)

  2.公式推導過程

  等差數(shù)列教案2

  教學目標

  1.理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并能運用通項公式解決簡單的問題。

 。1)了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列,了解等差中項的概念;

 。2)正確認識使用等差數(shù)列的各種表示法,能靈活運用通項公式求等差數(shù)列的首項、公差、項數(shù)、指定的項;

 。3)能通過通項公式與圖像認識等差數(shù)列的性質(zhì),能用圖像與通項公式的關系解決某些問題。

  2.通過等差數(shù)列的圖像的應用,進一步滲透數(shù)形結合思想、函數(shù)思想;通過等差數(shù)列通項公式的運用,滲透方程思想。

  3.通過等差數(shù)列概念的歸納概括,培養(yǎng)學生的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識;通過對等差數(shù)列的研究,使學生明確等差數(shù)列與一般數(shù)列的內(nèi)在聯(lián)系,從而滲透特殊與一般的辯證唯物主義觀點。

  關于等差數(shù)列的教學建議

  (1)知識結構

 。2)重點、難點分析

 、俳虒W重點是等差數(shù)列的`定義和對通項公式的認識與應用,等差數(shù)列是特殊的數(shù)列,定義恰恰是其特殊性、也是本質(zhì)屬性的準確反映和高度概括,準確把握定義是正確認識等差數(shù)列,解決相關問題的前提條件.通項公式是項與項數(shù)的函數(shù)關系,是研究一個數(shù)列的重要工具,等差數(shù)列的通項公式的結構與一次函數(shù)的解析式密切相關,通過函數(shù)圖象研究數(shù)列性質(zhì)成為可能。

 、谕ㄟ^不完全歸納法得出等差數(shù)列的通項公式,所以是教學中的一個難點;另外, 出現(xiàn)在一個等式中,運用方程的思想,已知三個量可以求出第四個量。由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點。

  (3)教法建議

 、俦竟(jié)內(nèi)容分為兩課時,一節(jié)為等差數(shù)列的定義與表示法,一節(jié)為等差數(shù)列通項公式的應用.

 、诘炔顢(shù)列定義的引出可先給出幾組等差數(shù)列,讓學生觀察、比較,概括共同規(guī)律,再由學生嘗試說出等差數(shù)列的定義,對程度差的學生可以提示定義的結構:“……的數(shù)列叫做等差數(shù)列”,由學生把限定條件一一列舉出來,為等比數(shù)列的定義作準備.如果學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是等差數(shù)列的數(shù)列作為反例,再由學生修改其定義,逐步完善定義。

 、鄣炔顢(shù)列的定義歸納出來后,由學生舉一些等差數(shù)列的例子,以此讓學生思考確定一個等差數(shù)列的條件。

 、苡蓪W生根據(jù)一般數(shù)列的表示法嘗試表示等差數(shù)列,前提條件是已知數(shù)列的首項與公差.明確指出其圖像是一條直線上的一些點,根據(jù)圖像觀察項隨項數(shù)的變化規(guī)律;再看通項公式,項 可看作項數(shù) 的一次型( )函數(shù),這與其圖像的形狀相對應.

 、萦懈F等差數(shù)列的末項與通項是有區(qū)別的,數(shù)列的通項公式 是數(shù)列第 項 與項數(shù) 之間的函數(shù)關系式,有窮等差數(shù)列的項數(shù)未必是 ,即其末項未必是該數(shù)列的第 項,在教學中一定要強調(diào)這一點。

  ⑥等差數(shù)列前 項和的公式推導離不開等差數(shù)列的性質(zhì),所以在本節(jié)課應補充一些重要的性質(zhì);另外可讓學生研究等差數(shù)列的子數(shù)列,有規(guī)律的子數(shù)列會引起學生的興趣。

 、叩炔顢(shù)列是現(xiàn)實生活中廣泛存在的數(shù)列的數(shù)學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關問題,自己嘗試解決,為學生提供相互學習的機會,創(chuàng)設相互研討的課堂環(huán)境。

  等差數(shù)列教案3

  設計思路

  數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  教學過程:

  一、片頭

 。30秒以內(nèi))

  前面學習了數(shù)列的概念與簡單表示法,今天我們來學習一種特殊的數(shù)列-等差數(shù)列。本節(jié)微課重點講解等差數(shù)列的定義, 并且能初步判斷一個數(shù)列是否是等差數(shù)列。

  30秒以內(nèi)

  二、正文講解(8分鐘左右)

  第一部分內(nèi)容:由三個問題,通過判斷分析總結出等差數(shù)列的定義 60 秒

  第二部分內(nèi)容:給出等差數(shù)列的`定義及其數(shù)學表達式50 秒

  第三部分內(nèi)容:哪些數(shù)列是等差數(shù)列?并且求出首項與公差。根據(jù)這個練習總結出幾個常用的結152秒

  三、結尾

 。30秒以內(nèi))授課完畢,謝謝聆聽!30秒以內(nèi)

  自我教學反思

  本節(jié)課通過生活中一系列的實例讓學生觀察,從而得出等差數(shù)列的概念,并在此基礎上學會判斷一個數(shù)列是否是等差數(shù)列,培養(yǎng)了學生觀察、分析、歸納、推理的能力。充分體現(xiàn)了學生做數(shù)學的過程,使學生對等差數(shù)列有了從感性到理性的認識過程。

  等差數(shù)列教案4

  一、預習問題:

  1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的` , 通常用字母 表示。

  2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,即 或 。

  3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。

  4、等差數(shù)列的通項公式: 。

  5、判斷正誤:

 、1,2,3,4,5是等差數(shù)列; ( )

 、1,1,2,3,4,5是等差數(shù)列; ( )

 、蹟(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )

 、軘(shù)列 是公差為 的等差數(shù)列; ( )

  ⑤數(shù)列 是等差數(shù)列; ( )

 、奕 ,則 成等差數(shù)列; ( )

 、呷 ,則數(shù)列 成等差數(shù)列; ( )

 、嗟炔顢(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )

 、岬炔顢(shù)列的公差是該數(shù)列中任何相鄰兩項的差。 ( )

  6、思考:如何證明一個數(shù)列是等差數(shù)列。

  二、實戰(zhàn)操作:

  例1、(1)求等差數(shù)列8,5,2,的第20項。

 。2) 是不是等差數(shù)列 中的項?如果是,是第幾項?

 。3)已知數(shù)列 的公差 則

  例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?

  例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。

【等差數(shù)列教案】相關文章:

數(shù)學等差數(shù)列教案02-25

等差數(shù)列教材(教案)04-25

數(shù)學等差數(shù)列教案05-06

教案:等差數(shù)列(一)下04-25

教案:等差數(shù)列(一)上04-25

高中等差數(shù)列教案11-05

高中數(shù)學等差數(shù)列教案12-30

《等差數(shù)列》說課稿10-04

等差數(shù)列的證明04-29

證明等差數(shù)列04-29